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Dynamics of fluctuations in smectic membranes
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We present a comprehensive account of the dynamics of layer-displacement fluctuations in smectic liquid-
crystal membranes as studied by x-ray photon correlation spectroscopy (XPCS) and neutron-spin echo (NSE).
Combining these two techniques at fast relaxation times, three distinct relaxation regimes can be distinguished.
For thin membranes, at the specular Bragg position oscillatory relaxation occurs, which transforms for thicker
samples into exponential decay. Above a critical off-specular angle, in XPCS exponential relaxation is ob-
served that does not depend on the scattering angle. This indicates relaxation times that are independent of the
wavelength of the fluctuations. In this regime the relaxation of the fluctuations is dominated by the surface
tension. Using NSE larger off-specular angles can be reached than by XPCS, for which the relaxation time
decreases with the scattering angle. This regime is dominated by the bulk elasticity of the smectic membrane.
The results are compared with theoretical models for the fluctuation behavior of smectic membranes, in which
effects of the mosaic distribution and of the center of mass movement of the smectic membranes must be

incorporated.

DOI: 10.1103/PhysRevE.72.011704

I. INTRODUCTION

In a three-dimensional (3D) crystal the particles vibrate
around well-defined lattice positions with an amplitude small
compared to the lattice spacing. As the dimensionality of the
system is decreased, fluctuations become increasingly impor-
tant. As a result long-range translational order cannot exist in
2D and 1D; it would be destroyed by thermal fluctuations.
The spatial dimension at which thermal fluctuations just pre-
vent the existence of long-range order is called the lower
marginal dimensionality, which for solids has the value 2. In
this case, the positional correlations decay algebraically as a
function of distance. Low-dimensional ordering and the as-
sociated fluctuation behavior are of considerable interest and
can also be observed in 3D systems that are ordered in one
direction only. This situation has been studied for a wide
variety of systems comprising smectic liquid crystal films,
Langmuir films, Newtonian black films, and surfactant and
lipid membranes [1]. Smectic liquid crystals are often used
as model systems of specific types of ordering as they pro-
vide a variety of different phases and phase transitions. The
simplest type of smectic phase is smectic-A (SmA), in which
the elongated molecules are organized in stacks of liquid
layers. In addition the long molecular axes are, on average,
parallel to the layer normal. Hence a periodic structure exists
in one dimension: the rodlike molecules form a density wave
along the layer normal, while the system remains fluid in the
other two directions.

SmA liquid crystals are an example of a 3D system at its
lower marginal dimensionality. The correlation function de-
scribing the periodicity of the smectic layers decays algebra-
ically as 77, in which the exponent 7 is small and positive.
In x-ray scattering, instead of J-function-type Bragg peaks
with diffuse tails characteristic of 3D crystal periodicity,
power-law singularities corresponding to the smectic layer-
ing have been observed [2-4]. The thermal fluctuation
modes in smectics correspond to bending and compression
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of the layers, characterized by elastic constants K and B,
respectively. Defining u(r) as the layer displacement from its
equilibrium position, (u?(r)) is found to diverge logarithmi-
cally with the sample size (Landau-Peierls instability) [5]:

W)= —n| . (1)

Here L is the thickness of the system, d the smectic layer
periodicity, and kzT the thermal energy. At large sample size
the long-range order is destroyed by the thermal fluctuations
of the system even though the algebraic decay is slow.

A unique property of smectic liquid crystals is their ability
to form films that are freely suspended or free standing over
an aperture in a frame. This property has been known since
the beginning of the last century. Friedel [6] used it in his
monograph on liquid crystals as an argument in favor of the
existence of layers in the smectic phase. However, it was not
before the 1970s that such films found extensive usage in
experimental studies [7-9]. The smectic layers align parallel
to the two air-film surfaces, which are flat because the sur-
face tension minimizes the surface area of the film. Apart
from the edges, such films are substrate free and can be
considered as membranes consisting of stacks of smectic lay-
ers. They have a high degree of uniformity: the alignment of
the smectic layers is almost perfect, allowing one to study
single-domain samples of various thickness. The surface area
can be as large as 1000 mm?, while the thickness can be
easily varied from thousands of layers (tens of um) down to
two layers (about 5 nm). The average effects of the fluctua-
tions in smectic membranes have been extensively investi-
gated by static x-ray scattering [10,11]. An important result is
that under most practical circumstances the fluctuations of
the smectic layers are conformal: they are uniform across the
film. Evidently, a loss of conformality is expected for very
thick membranes. In thin membranes it has been observed in
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off-specular (diffuse) x-ray reflectivity for fluctuations with a
small in-plane wavelength below about 30—50 nm.

If coherent light is incident on a material, the scattered
intensity shows a so-called speckle pattern that reflects the
instantaneous configuration of the scatterers. Movement of
the scatterers causes a corresponding change in this pattern
and thus contains information on the dynamics of the system.
Photon correlation spectroscopy (PCS) or dynamic light scat-
tering measures the time-dependent intensity autocorrelation
function of the speckle pattern. Using visible light it has
become a well-established technique since lasers became
available [12]. In contrast, correlation spectroscopy with co-
herent x rays has only been developed during the last decade
at third-generation high-brilliance synchrotron sources
[13—15]. Dynamic light-scattering studies of smectic mem-
branes were carried out by Bottger and Joosten [16] and
Nallet, Roux, and Prost [17] and more recently x-ray photon
correlation spectroscopy (XPCS) has been successfully ap-
plied to the measurement of liquid crystal and polymer dy-
namics [18-21]. First experiments probing the dynamics of
the fluctuations in smectic membranes using XPCS were car-
ried out by Price er al. [22] using soft x rays, and by de Jeu
and co-workers using conventional x rays [23-25]. Extensive
theoretical models of fluctuations in smectic membranes
have been developed in recent years [26-36]. Note that light-
scattering experiments are sensitive either to orientational
fluctuations of the director associated with the layer undula-
tions [27,37] or to long-wavelength fluctuations of the air-
liquid interface (as in the case of Ref. [16]). In contrast,
XPCS is sensitive to the layer fluctuations and provides in
addition a much better spatial resolution. Both for light scat-
tering and x-ray scattering of smectic membranes, finite-size
and surface effects, depending on the surface tension and
perhaps other surface parameters, should be taken into ac-
count. Most importantly, the finite thickness of a smectic
membrane leads to quantization, producing a set of modes
dependent on surface parameters, instead of a continuous
fluctuation spectrum as in bulk systems.

During the last years we have extended XPCS into the
nanosecond range [24], which also opened the possibility of
combining this technique with neutron spin-echo (NSE)
methods [25]. As a follow-up of the results in these Letters,
we present is this paper a detailed account of the dynamics of
fluctuations in smectic membranes. The next section summa-
rizes the theory, adapted to the discussion of the experimen-
tal results in the subsequent sections. In Sec. III we discuss
the experimental aspects including the influence of the x-ray
beam on the sample stability. A full technical discussion of
the effects of coherence and resolution in XPCS of smectic
membranes has been given elsewhere [38]. The results given
in Sec. IV include a transition from oscillatory relaxation of
the fluctuations (due to inertial effects) to simple exponential
relaxation of overdamped fluctuations, as a function both of
membrane thickness and of the off-specular angle. In the
exponential regime the damping is dominated by the surface
tension. Finally, at smaller length scales of the fluctuations
bulk elasticity is expected to become increasingly important.
The transition to this regime has been observed by combin-
ing fast XPCS with NSE. The results are discussed in Sec. V
with emphasis on the factors that influence the determining
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wavelength from the fluctuation spectrum and on the prob-
lems associated with the choice of this quantity in the limit
q, — 0.

II. THEORY
A. X-ray scattering

In x-ray scattering the amplitude of the scattered field
E(q) is related to the Fourier transform of the electron den-
sity distribution within the sample p(r). The intensity of the
scattered x rays I(q)=(E(q)E"(q)) is proportional to the
structure factor S(q):

S(q) = J J d3r]d3r2p(r1)p(r2)exp[— iq-(ri—-ry)], (2

in which q=(q, ,q,) represents the scattering vector and r;
and r, define positions within the scattering volume. If p(r)
changes in time, S(q) also becomes time dependent and is
usually referred to as the intermediate scattering function.

In a cylindrical coordinate system r=(r,,z)=(x,y,z)
with the z axis perpendicular to the surface of the smectic
membrane, the density profile of this stack of liquid layers at
position z—nd can be represented as [26]:

N

p(rj_vz’t) = player(z) * E 5(Z —nd - un(rjgt))’ (3)
n=0

where n indicates a specific smectic layer, N the total number
of layers, u,(r  ,7) the displacement of the nth smectic layer
from its equilibrium position, and p;,,,(z) the density profile
of a single smectic layer. This equation reflects that a smectic
membrane is homogeneous in the (x,y) plane, while it has an
inhomogeneous, layered structure in the z direction.

B. Intensity-intensity time correlation function

In this section we summarize the calculation of the
intensity-intensity time correlator (I(z)1(0)) that is measured
in XPCS experiments, defined as

T

(I(1)1(0)) = %f dTE(NE (DE(t+ DE (t+ 7). (4)
0

According to Eq. (2) the intensity correlator can be rewritten
in the form

I(0I1(0)) = J J J J dr drsdrsdr e~ @ )= (rry)

X{p(r;,0)p(ry,0)p(rs,1)p(ry,1)). (5)

The integration is performed over the coherence volume, the
size of which can differ from the scattering volume. In XPCS
the two sizes should preferably match. In the further discus-
sion we will assume that this is the case and use coherence
and scattering volume as synonyms.

The density of a membrane can be split into two parts:
p(r,,z,t)=py(z,1)+Ap(r  ,z,t). The first term p,(z,?) repre-
sents the average displacement of a layer within the scatter-
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FIG. 1. Intensity correlation
functions calculated for a 2-um
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and (b) homodyne case. The
graphs are renormalized for
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ing volume in the z direction at time ¢, while Ap(r, ,z,?)
denotes time-dependent fluctuations. We assume that the
membranes are incompressible and that all the layers are
undulating conformally (“unisono”). In this case py(z,?) con-
tains only translations of the scattering volume that do not
change the scattered intensity, and we can drop the index n in
the layer displacement function u,(r | ,7). Then the total scat-
tered field can be split in two parts:

E(7) = Eo(t) + OE(1), (6)

where E(r) and SE(t) correspond to py(z,t) and Ap(r, ,z,1),
respectively. In this situation we can consider Ej(7) as a con-
stant “reference” signal. The normalized correlation func-
tions of the fluctuating electric field are defined as

_ (SE(7)SE"(T+ 1))
8:(0) = R ()

(SE(DSE" (DN SE(7+ 1) SE"(7+1))
(1, ’
where IO=<E0E;> and 1,=(SE(t)SE"(t)). Using these defini-

tions and Eq. (6), the intensity correlator in Eq. (4) can be
expressed in the form [39]

g (1) = (8)

(I(I(0)) = (Iy + 1)* + 2Lo], Re[g, ()] + L (g,(1) = 1). (9)

This formalism allows us to distinguish in XPCS two differ-
ent detection schemes: heterodyne and homodyne. The het-
erodyne regime is characterized by SE(t)<<E,, for which
situation the weak scattered intensity /, is amplified by the
strong reference signal /,. Consequently, the last term in Eq.
(9) can be omitted and the correlator is determined by g;(z).
Homodyne detection applies to the situation that the refer-
ence signal I, is absent. Then the right-hand side in Eq. (9)
equals If,gz(t). By definition [, reflects translations of the
scattering volume and thus contributes a d-function-like sig-
nal at the specular position. Depending on the scattering ge-
ometry we either catch this reflection or not. In this way the
presence of the reference signal /, can be controlled and the
measurement switches between homodyne and heterodyne
detection.

Both g,(r) and g,(r) can be expressed in terms of the
density correlations in the membrane. The correlator g,(7) is
proportional to the intermediate scattering function

Time (us)

(SE(D)SE" (7+ 1)) ~ S(q,1) = f drydiryei9 T

X<Ap(rl’ T)Ap(rZa T+ t)>
(10)

If we assume the density fluctuations Ap(r,7) to be Gaussian,
we can express g,(7) as a function of g,(r). Using Wick’s
theorem to factor out the four-point density correlator in Eq.
(5) [40], we obtain

(Ap(ry,0)Ap(r;,0)Ap(rs,0) Ap(ry, 1))
=(Ap(r;,0)Ap(r;,0)XAp(rs, ) Ap(ry, 1))
+(Ap(r;,0)Ap(rs,0){Ap(r,,0)Ap(ry,1))
+(Ap(r;,0)Ap(ry,0)){Ap(ry,0)Ap(rs,0)).  (11)

Introducing this expansion into Eq. (5), g,(¢) can be written
as a sum of three terms: g,(#)=1,+I,+ I3, each of which is the
Fourier transform of the corresponding term in Eq. (11). In I,
the two positions in the correlators are taken at the same
time. Consequently, after time averaging they become time
independent and /; results in the average intensity squared.
In the case of an infinite scattering volume the integration in
Eq. (5) is extended until infinity and the correlator
{p(ry,0)p(rs,2)) in I, depends only on the vector difference
r;—r;. As a consequence this term contributes in Eq. (11) to
the scattering at a zero angle only and is usually omitted. The
remaining term /5 is equal to the squared modulus of g,(z).
As a result Eq. (5) transforms into the following equation,
known as the Siegert relation:

gt =1+]|g, (1) (12)

Note that the validity of this relation depends critically on
the neglect of the term /,. The consequences of inclusion of
I, are considered in Appendix A.

Figure 1(a) shows a correlation function in the heterodyne
detection scheme. According to Eq. (9), in this case g;(¢)
defines the profile of the measured intensity correlation func-
tion. Such oscillating profiles have been frequently observed
in XPCS measurements at specular positions where the ref-
erence intensity I, is present [24]. In contrast, at off-specular
positions this signal is absent. XPCS measurements in this
homodyne regime indicate a simple exponential relaxation of
the intensity correlation function that can be fitted using the
Siegert relation [24].
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FIG. 2. Dispersion curves for the relaxation of fluctuations of 8CB smectic membranes for three different thicknesses calculated
according to Egs. (21) and (22) using the parameters from Table I. (a) Dependence of the relaxation time on the wave vector ¢,,,. The dotted
lines indicate for each thickness the transition wave vector g,; the dashed line give the fast relaxation branch for 0.5 um. (b) Dependence

of the frequency of the fluctuations on the wave vector g,,,),.

C. Relaxation regimes

Using the smectic membrane density profile given in Eq.
(3) we can express S(g,7) in the following form:

S(q’t) = |ﬁlayer(qz)|2 J drl,J_er,J_e_iqL'(rl'L_rz’L)
XE expli(m —n)dq, — q§<u2> - q?G(ri,l -1, 0]
(13)

Here pj,.,(q,) is the Fourier image of the smectic layer den-
sity profile pj,,(z). The layer displacement correlation func-
tion G(r, ;-r, »,0)=((u(r, ,0)—u(r, ,1))?) can be ex-
pressed for a rectangular membrane of dimensions (L,,L,)
and thickness L in the following form (see Appendix B):

. 1
Gr, -1, )=2kT >, —
J_’ J_’ b m,n:l KLqizn + 27q3nn

Xcos(?(xl —x2)>

X

XCOS(Z_?()’I —)’2)>

t t
T| €Xp —: — T, exp —:
1 2

i Bp)

X

(14)

In this expression vy represents the surface tension and g,
the wave vector of a specific fluctuation defined as

(22
Dnn = Lx Lv .

According to Eq. (B35) of Appendix B the relaxation
times 7; and 7, can be written as

(15)

1 2 4 2
—= —mm"{l + i\/ s (qunn + —yqﬁm> - 1}
71,2 2py 749 L

3% mn
= a(qun) F if (@) (16)
where
N4,
a(qmn) = ﬂ’ (17)
2po

2

39 1m0 4P0 4 2’}/ 2

S Q) =" \/—<qu,1 + "G, |- 1. (18)
2p0 77§Q;:m L

Figure 2(a) shows the dependence of the real part of the
relaxation times 7; and 7, on the wave vector of a particular
fluctuation. The nature of the dispersion curve changes at a
crossover wave vector g. for which the square root in Eq.
(18) changes sign. For the small values g,,, involved we can
disregard the term in ¢,. Then the relaxation times 7, and 7,
can be represented in the form

2p 8poY -
Ty~ — o (1:;'\/—2 e —1) : (19)
139 mn 773Lqmn
The crossover then is given by
|8poy
4=\, - (20)
7L

In the region g¢,,,<gq. the function f(g,,,) is real and the
relaxation times 7 and 7, are complex conjugate numbers.
This regime corresponds to a combination of exponential
relaxation and oscillatory behavior. From Eqs. (17) and (18)
we derive the following expressions for the relaxation time 7
and the frequency w

2po
T(an) = 2

3 mn

21
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739 1 4P() 4 27 2

w(an) = \/ (qun + Y| 1. (22)
2p0 n%q;:m L

Note that the relaxation time does not depend on the mem-
brane thickness while the frequency decreases with thickness
as 1/yL. The behavior of g,,) and w(g,,,) according to
Egs. (21) and (22) is illustrated in Fig. 2 for three membranes
of different thicknesses.

In the region g,,,>q. both solutions are real. Figure 2
shows that 7, strongly decreases with increasing wave vector
qmn- The contribution of this fast relaxation to the correlation
function is weighted by the value of 7, [see Eq. (14)] and
consequently also decreases strongly with wave vector.
Hence we can neglect this branch and consider for g,,,>q,
only the slow branch with relaxation time 7. In this regime
the elastic term qu,m cannot be disregarded anymore. Using
8poy/ (ﬂ%Lqﬁm) <1, for large ¢,,, the square root can be ex-
panded and we can write 7| in the simplified form:

73

H=———. 23
! 27/L+Kq,2nn 23)

According to this equation we can divide the region g,,,
> q. into two different subregimes. For inm <2vy/L the sec-
ond term in the denominator can be omitted and we arrive at

7= 13L/(27). (24)

In this “surface relaxation regime” the relaxation time de-
pends only on the surface tension, the membrane thickness,
and the viscosity. For Kg?, >27v/L the second term in the
denominator of Eq. (23) dominates and

= 773/(K615m)- (25)

This is the “bulk-elasticity relaxation regime” for which the
relaxation time depends on the bending elasticity and the
viscosity, and it is neither sensitive to the surface tension nor
to the membrane thickness anymore.

III. EXPERIMENTAL
A. Smectic membrane samples

We studied the smectic liquid crystalline compounds
N-(4-n-butoxybenzilidene)-4-n-octylaniline (40.8), 4-heptyl-
2-[4-(2-perfluorhexylethyl)phenyl]-pyrimidin ~ (FPP) and
4-octyl-4’-cyanobiphenyl (abbreviated as 8CB). Their mo-
lecular structure and phase transitions are given in Fig. 3. In
Table I summarizes values of relevant material parameters
and the smectic periodicity of these compounds. The first
compound 40.8 is typical for a large class of standard liquid
crystalline materials. The other ones have some special char-
acteristics giving differences in material parameters. The flu-
orinated part of FPP is surface active (low surface tension)
and relatively rigid (large layer compressibility B). 8CB has
a strongly polar end group leading to “dimer” formation and
a layer periodicity corresponding to partially overlapping
molecules. It has also been chosen because of the conve-
nience of a smectic-A phase at room temperature.

Smectic membranes were spread manually by wetting the
edges of an opening in a metal holder by the mesogenic
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FIG. 3. The compounds: 40.8 [23], FPP [10], and 8CB with
their phase transition temperatures in °C. I stands for the isotropic
phase, N for nematic, SmA and SmC for smectic-A and smectic-C,
respectively, and CrB for crystalline B and K for crystal phases. The
experiments were done in this order around 50, 100, and 27 °C,
respectively.

compound in the smectic phase and then moving a spreader
across the hole. By varying the amount of smectic material,
the temperature, and the speed of drawing, relatively thin
membranes ranging from 5 nm (two layers) to about 200 nm
were produced. For x-ray reflectivity studies a large footprint
of the incident x-ray beam must be accommodated. The
membranes typically spanned a 10X 25 mm? rectangular
hole in a polished plate with sharp top edges. The sharp
blades forced the membrane close to the top of the holder,
reducing shadowing of the beam. Alternatively, a rectangular
stainless-steel frame with sharp edges with a variable area
was employed, in which two blades could be moved by a
micrometer screw. Starting with smectic material at (almost)
closed blades, thick membranes up to tens of um were
stretched to about 15X 5 mm?.

Directly after preparation, a film usually consists of re-
gions of different thickness, from which it equilibrates to a
uniform situation. The equilibration time varies from minutes
to days depending on the specific compound, the tempera-
ture, and the type of frame. Usually the thinnest region
grows at the expense of the thicker ones. The two surfaces of
a membrane induce an almost perfect alignment of the smec-
tic layers: the residual curvature of the film is mainly due to
the nonplanarity of the edges of the holder. The resulting
mosaic distribution, expressed as the angular spread of
the surface normal, can be =0.001° over an area of about
100 X 500 um? (footprint at high resolution) [38]. The mem-
brane thickness can be easily determined by optical reflec-

TABLE 1. Material parameters of the compounds

investigated.

Parameter 40.8 FPP 8CB

K (10712 N) 5 10 20

B (10" N/m?) 0.10 75 1.8

v (1073 N/m) 21 13 25

75 (kgm™'s7h) 0.05 0.015 0.1

d (nm) 2.85 2.94 3.14
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FIG. 4. Scattering geometry. q;, and q,, represent the incident
and scattered wave vectors, respectively, and q is the scattering
vector. ¢, and g, are the projections of q on the surface and on the
normal to the surface of the smectic membrane, respectively.

tivity, which for sufficiently thin films scales as the thickness
squared [41,42]. The number of smectic layers in a film can
be precisely determined from specular x-ray reflectivity. Re-
flection occurs both at the front and back interfaces, leading
to constructive or destructive interference in dependence of
the incoming angle (Kiessig or interference fringes). The pe-
riod of the fringes is inversely proportional to the film thick-
ness L. In addition, the internal periodic structure generates
finite-size Bragg-like peaks centered at g,=27n/d. Thus the
number of smectic layers N=L/d can be determined unam-
biguously. The smectic membranes are stable over many
days or even months despite the fact that they are homoge-
neously compressed over their surface [42]. All measure-
ments were done at the low-temperature region of the SmA
range as indicated in Fig. 3.

B. X-ray scattering setup

Coherent x-ray scattering experiments were performed at
the undulator beamline ID10A (Troika I) of the European
Synchrotron Radiation Facility (ESRF, Grenoble). Mem-
branes were usually mounted vertically in a reflection geom-
etry (see Fig. 4). The incident wave vector q;, and the scat-
tered wave vector q,, determine the wave vector transfer
q=qgu—Y;, With its modulus given by g=(27/\)sin 6, \ be-
ing the x-ray wavelength and 26 the scattering angle. The
membranes were illuminated either by 8 keV radiation (A
=0.155 nm) or (to minimize absorption) by 13.4 keV radia-
tion (A=0.093 nm). The energy was selected by a Si(111)
monochromator followed by a Si mirror to suppress higher
harmonics. The bandpass of the monochromator, given by
AN/N=107%, determined the longitudinal coherence length
of about 1.5 um. The path length of the beam in the smectic
membrane is given by 2L sin # and should not exceed this
value. This means that at the quasi-Bragg position corre-
sponding to the smectic-layer spacing (#=1.5°), the mem-
brane thickness should be restricted to L <30 um. The beam
emerging from three undulators in series was collimated by a
system of two slits and focused in the vertical direction by a
refractive beryllium lens with a demagnification ratio of
~1:1. This symmetrized the transversal coherence lengths
to about 10 um, the same size as the 10-um pinhole in front
of the sample. Guard slits were placed after the pinhole
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to remove parasitic scattering. Using a 10-um pinhole, at
the Bragg angle the footprint of the beam was about
0.01 X 0.5 mm?. At this position, the resulting mosaic distri-
bution typically varied from 1 to 10 mdeg.

A fast avalanche photodiode (Perkin Elmer C30703) [43]
with an intrinsic time resolution =2 ns was used as detector
at a distance of 1.5 m from the sample, with predetector slits
typically set to 30 X 30 wm?. The resolution of the setup was
estimated to be Ag,~10™* nm™' and Ag,=Ag,~107* nm™".
Measurements were performed in the uniform filling mode
of the storage ring consisting of 992 bunches at intervals of
2.8 ns.

The coherent photon flux at the sample for a 10-um pin-
hole was about 1X10° countss™'/100 mA at 8 keV and
about 5% 107 counts s™'/100 mA at 13.4 keV. The scattered
intensity I(r) was fed into a hardware autocorrelator that
computed the normalized intensity-intensity time autocorre-
lation function g,(7). This was done in real time using a
hardware multiple-tau digital autocorrelator FLEXO01-8D
(correlator.com, sampling time down to 8 ns). Ultimately the
time structure of the storage ring limits the fastest accessible
dynamics. Thanks to the perfect match between the millide-
gree mosaic distribution of the membranes and the high reso-
lution of the setup, for thick samples at the Bragg position
count rates up to tens of MHz were reached. This allowed
measurements as a function of the wavelength of the fluctua-
tions at off-specular positions (¢, #0). However, the steep
decrease of the intensity with ¢ still prevented access to
fluctuations of wavelengths less than a few hundred nanom-
eters. As we shall see, this limitation could be lifted using
NSE.

C. Beam absorption and sample stability

The high brilliance of the x-ray beam at third-generation
synchrotrons can have a destructive effect on many samples,
in particular in the case of soft matter. For soft films on a
substrate the x-ray beam probably generates free electrons in
the substrate; these in turn migrate to the soft film and have
a devastating ionizing effect. In the absence of a substrate,
smectic membranes show a remarkable resistance to high-
energy loads. The problems we encountered were not so
much associated with irreversible beam damage but rather
with heat absorption. Though in the case of XPCS the pin-
hole collimation reduces the total intensity strongly, the local
flux does not change (>10'3 photons s™! mm™ @ Si(111),
8 keV). Hence even the high-resolution setup used in XPCS
experiments puts exceptional stability requirements on the
sample.

The heat generated by 8-keV x rays in a smectic mem-
brane can be estimated as follows. At the Bragg angle
6=1.5° the path length for a membrane of thickness
L=1.7 pm is given by L/sin #=65 um. The absorption
of hydrocarbons over this length is about 2% of the
incident intensity of 10° photons/s, which amounts to
2X 107 photons/s. At 8 keV this is equivalent to about
3X 1078 W. The width W of the beam and the height H
perpendicular to the scattering plane are of the order of
10 wm, the size of the pinhole. Hence the absorption takes
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FIG. 5. Effects of beam absorbtion on the rocking curve of a
1.7-um FPP membrane (10-um pinhole). Circles: initial rocking
curve. Crosses: after removal of one attenuator (3X increased in-
tensity). Asterisks: immediately after inserting the attenuator again.
Triangles: after equilibrating for 6 minutes.

place in a volume V=(L/sin )WH=6X 107 mm>. For a
density p=10°kg/m® and a specific heat of 2X10°
I/ (kg °C), this leads to an increase of the initial temperature
in the illuminated volume of the order of 3 °C/s. At
13.4 keV the absorption is a factor of 4 less. The absorption
volume is imbedded in the membrane and heat is expected to
spread out laterally through the film by conduction and con-
vection. It is not easy to estimate these effects, but evidently
an appreciable temperature increase can occur. Upon ap-
proaching the transition to a nematic or an isotropic phase
this can lead to spontaneous thinning of the membrane.

The heat generated is sufficient to cause some convective
instabilities inside the smectic membrane [44]. This results in
fluctuations of the reflected intensity. Figure 5 shows
changes of the rocking curve induced by removal of an at-
tenuator of 25 wm Cu leading to 3 times more intensity. This
increase of incident intensity results in a decrease of the scat-
tered intensity. After inserting the attenuator back, the origi-
nal rocking curve profile is restored after a few minutes. We
attribute this behavior to hydrodynamic instabilities in the
sample arising from convective flow caused by local density
changes due to heating. This disturbs the orientation of the
layer structure of the membrane, leading to a changing rock-
ing curve as shown in Fig. 5. Evidently we are working at
the limits of stability of the smectic membranes themselves.
In the case of a 100-um pinhole the heat load per unit vol-
ume is still the same, but the absolutely absorbed heat is two
orders of magnitude larger. Hence variation of the pinhole
can cause large changes in sample stability.

D. Neutron spin-echo setup

Neutron spin-echo measurements were performed at spec-
trometer IN15 of the Institut Laue-Langevin (ILL, Grenoble,
France) [45]. Neutron contrast was obtained from 8CB
with deuterated phenyl rings. Large-size membranes of
50 X 50 mm? were stretched on an aluminum frame to be
illuminated by a neutron beam of about 40 X 10 mm?. These
membranes were not of uniform thickness; instead, several
regions were observed with a thickness from about half a

PHYSICAL REVIEW E 72, 011704 (2005)

FIG. 6. Scattering geometry for NSE measurements of a smectic
membrane in a reflection geometry.

micron at the top of the vertical frame up to a few microns at
the bottom. Wavelengths of 0.9 nm and 1.5 nm were se-
lected, allowing time scales up to 40 ns and 100 ns, respec-
tively. Scattered neutrons were registered by a 2D position-
sensitive detector. Each point of the detector corresponds to a
specific value of the projection g, of the scattering vector on
the surface of the membrane (see Fig. 6). If k=27/\ is a
wave vector of the neutron beam, we can write for the inci-
dent beam on the membrane

9,
qx=kcos<?0+w>, (26)
4,=0, (27)

9,
q.=k sin(?o + w). (28)

For the outgoing beam we obtain

qx=kcos(A¢)cos<%+Aw— w), (29)
gy =ksin(A¢), (30)

Do
qz=kcos(A¢)sm<?+A¢—w). (31)

Summing up the components in ¢, and g, we arrive at the
following expression for ¢, which corresponds to a point on
the detector at angular displacement (8, ¢):

2ar

‘M=T

X \[cos(A@)cos(8+ Ay — w) — cos(0+ )] + sin*(Ag).
(32)
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FIG. 7. Correlation functions from XPCS of smectic membranes of different thicknesses; lines indicate fits to Eq. (39). (a) 40.8: Solid
squares: 0.45 um. Solid circles: 1.0 wm. Solid triangles: 2.2 um. Open triangles: 6.0 wm. Open squares: 10.0 um. (b) FPP: Solid squares:
0.48 pm. Solid circles: 2.8 um. Solid triangles: 5.9 wm. Open triangles: 13.2 wm. Open squares: 15.0 wm.

To extract the g, dependence of the relaxation time we
grouped points on the detector with close values of g . As
the scattering directions with the same projection on the sur-
face of the membrane form a cone, the corresponding points
on the detector will form ellipses. Dividing the detector sur-
face into three elliptic areas and integrating the contributions
from all points in these regions, we constructed for each
scattering angle three correlation functions.

In the NSE measurements, S(g,7) was assumed to behave
as a Kohlrausch-Williams-Watts (KWW) function [46,47]:

t B
S(g,t) =exp —(T ) )
KWW

This form arises from a broad superposition of exponentials
with some distribution function f(7) [48]:

(33)

+00

e el
f(In 7)exp| — — |d(In 7) = exp) — .
o T TKWW
(34)
In this case S(g,t) can be written as
S(g,1) = f‘” de(T)exp(— £>. (35)
0 T

From this equation, we can define the average value of 7 as

<7'>=f Tf(7dT. (36)
0

Now we can calculate the following integral:

f“’ S(g,t)dt = f“’ f“ dthf(T)exp(— £>
0 0 Jo T

On the other hand, we can use Eq. (35) and calculate the
above integral exactly:

J i S(q,t)dt =

0

f drf(n)T=(7).

0

r(1/p)

TKWW -

(37)

Equating the results of the last two equations we conclude

_T/p)
B

Fitting the NSE curves with a KWW exponential function
and using Eq. (38), we obtained the average value of the
relaxation time for each area section of the detector.

(7 (38)

TKWW -

IV. EXPERIMENTAL RESULTS

Figure 7 shows typical intensity correlation functions
from XPCS of smectic 40.8 and FPP membranes of various
thicknesses at the first-order specular Bragg position. The
experimental curves were fitted to a simple oscillatory relax-
ation function:

I(11(0))

(n?

In thin membranes we note for both compounds an oscilla-
tory behavior. In thicker membranes the oscillations shift to
larger times, while for thick 40.8 membranes the oscillations
disappear completely and only exponential relaxation is left.
In FPP membranes, at the first Bragg position the oscillatory
relaxation is present for all thicknesses measured. The only
exponential relaxation found in FPP membranes at any
specular position was at the second Bragg peak (see Fig. 8).

=A exp(— t/7)cos(wt + ). (39)

1.5

Correlation function

01 1 1000

FIG. 8. Correlation functions measured at the first and second
Bragg positions of a 13.2-um-thick FPP membrane.
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TABLE II. Fitting parameters for 40.8 membranes.

PHYSICAL REVIEW E 72, 011704 (2005)

TABLE III. Fitting parameters for FPP membranes.

Thickness (um) A 7 (us) o (us™) ¢ (rad) Thickness (um) A 7 (us) o (us™) ¢ (rad)
0.037 0.06 2.0 0.86 0.40 0.047 0.15 2.8 0.25 0.88
0.068 0.04 3.9 0.32 0.52 0.64 0.15 114 0.05 0.95

0.3 0.03 5.9 0.29 0.41 2.8 0.24 5.8 0.24 0.17
1.0 0.10 54 0.33 0.08 3.0 0.24 2.6 0.28 0.02
2.2 0.13 2.2 0 0 5.9 0.27 8.2 0.15 -0.04
5.0 0.05 9.7 0.14 -0.09 7.7 0.21 12.3 0.11 0.13
6.0 0.11 5.3 0.19 -0.48 12.5 0.23 7.7 0.13 -0.49
10.0 0.11 5.9 0 0 13.2 0.16 18.7 0.07 0.20

15.0 0.13 31.7 0.04 0.33

The fitted values for the relaxation time 7 and the fre-
quency w are given in Tables II and III, while their thickness
dependence is plotted in Fig. 9. Even though the scatter of
the experimental points is considerable, we can conclude that
7 increases and w decreases with membrane thickness. Note
in Table II the anomalous behavior of a relatively thin
2.2-pm 40.8 membrane that shows exponential relaxation,
while both thinner and thicker membranes still display oscil-
latory behavior.

Figure 10(a) shows a series of off-specular measurements
of 8CB membranes. Already for a small offset from the
specular position corresponding to 10 mdeg, the oscillatory
profile transforms into a pure exponential relaxation. The
relaxation time remains about constant for all measured off-
specular positions [see Fig. 10(b)]. Figure 11 illustrates the
transition process from oscillatory to exponential relaxation
in more detail for an FPP membrane. Close to the specular
Bragg position oscillations are still detected; at slightly larger
off-specular scattering angles the behavior changes into ex-
ponential relaxation.

On several occasions we obtained for highly ordered
membranes a poor contrast for the correlation functions at
the specular reflection position. This in spite of the fact that
such samples with a narrow mosaic distribution show sharp
and very intense specular reflections. This effect is illustrated
in Fig. 12. At the center of the rocking curve hardly any
contrast is left, which starts to develop as soon as we shift
slightly (only 0.5 mdeg) off specular.

Figure 13(a) displays data obtained for SCB membranes
by NSE. At the specular position no relaxation is observed in
this time range (below 50 ns) in agreement with the XPCS
results of Fig. 10(a). The curves measured close to the specu-

lar position indicate a slow relaxation, while at the larger
off-specular positions the relaxation time decreases [see Fig.
13(b)]. This behavior differs strongly from the approximately
constant values of 7 from XPCS at small off-specular angles
shown in Fig. 10.

V. DISCUSSION

In the experimental part we have made empirical fits of
the correlation functions to Eq. (39), which we shall interpret
now in terms of the various contributions to the relaxation.
We shall start the discussion with the relatively simple situ-
ation at large off-specular angles (which means larger than
q.)- The wavelength of the determining largest fluctuation is
set by the choice of the off-specular angle or equivalently
¢ . - In this region only exponential relaxation is observed. In
the second part we consider smaller values of ¢, approach-
ing g, —0 and the effect of crossing ¢g.. As we shall see, in
this regime two “external” effects need to be taken into ac-
count that influence the relaxation behavior. Around ¢, =0
the size of the coherence volume comes into play which
prevents wavelength larger than this dimension to contribute
to the relaxation. A second factor is the mosaic distribution
of the sample, given by the width of the rocking curve. This
width limits the range of projections of scattering vectors
that contribute to the intensity at the Bragg position. The
combination of these two effects determines a “window” of
wavelength that can contribute to the relaxation.

A. Off-specular results: Surface and bulk-elastic regimes

In order to probe with XPCS fluctuations of a particular
wavelength, the projection of the scattering vector on the

FIG. 9. Dependence of relax-
ation time and frequency of the
oscillations on membranes thick-
ness: Circles: 40.8. Triangles:

FPP.
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FIG. 10. XPCS measurements of 8CB membranes. (a) Correlation functions for a thickness of 2.0 um at the off-specular scattering
angles indicated. (b) Experimental relaxation times at off-specular positions for the thicknesses indicated; solid lines give the theoretically

calculated dispersion curves.

membrane surface should match the wave vector of interest.
In x-ray reflectivity this is accomplished by choosing an off-
specular angle corresponding to the desired value of ¢ . In
Fig. 10(b) the relaxation times from such off-specular mea-
surements are plotted together with the theoretical dispersion
curves. In the range accessible by XPCS no dependence of
the relaxation time on ¢, is observed, in agreement with the
plateau in the theoretical dispersion curve. The relaxation
times are determined by the surface tension and scale with
the thickness of the membrane as expected from Eq. (24).
Note that at these off-specular positions no reference signal
is present, resulting in a homodyne detection scheme. Ac-
cording to the Siegert relation then the intensity correlation
function is proportional to |g,(r)|?, which results for expo-
nential decay in a relaxation time 7/2. Hence the values ob-
tained from the experiment have been multiplied by a factor
2 to obtain 7.

In XPCS the determination of the relatively fast relaxation
times involved in smectic membranes requires a minimum
intensity of the order of 10* cts/s. Hence, in spite of the
large count rates at the specular Bragg position, the steep
decrease of the scattered intensity with off-specular angle
limits the accessible range of g, values. As a result, the
accessible wave vector values are all at the plateau region of

=
N
T

Correlation function
e}

=
o
T

0.1 1 10

FIG. 11. Autocorrelation functions of a 13.2-um-thick FPP
membrane around the first Bragg position. Solid circles: specular
position. Open triangles: 10-mdeg offset. Solid triangles: 12-mdeg
offset. Open circles: 15-mdeg offset. The upper curves have been
vertically shifted for clarity (from top to bottom) by 0.085, 0.06,
and 0.03, respectively.

the dispersion curve. However, larger off-specular scattering
angles could be achieved in NSE experiments. The large size
of the neutron beam in combination with the integration over
the detector area results in sufficiently large count rates at
off-specular positions as large as several degrees. As the
wavelength of the neutrons is comparable to the x-ray wave-
length used, the offset angles in NSE of several degrees re-
sult in ¢ | -values up to two orders of magnitude larger than
probed by XPCS.

In Fig. 13(b) the averaged values of the NSE relaxation
time [see Eq. (38)] are plotted together with the theoretical
dispersion curves. These data show a ¢ | dependence that can
be related to bulk elastic effects. From Eq. (25) we expect a
1/ qi dependence of the relaxation time, well in agreement
with the experimental results. Moreover, no thickness depen-
dence is present anymore, as expected from theory, which is
convenient in light of the nonuniform thickness of the large-
size NSE samples. This leads to measurements that are a
superposition of data for different values of L.

In the above discussions we assumed so far that the smec-
tic membranes are incompressible. This approximation
works well for fluctuations with a wave vector in the oscil-
latory or surface regime. It breaks down at larger ¢, values
[10], for which a finite compressibility might play a role. As
indicated in Fig. 13(b), the effect of a finite compressibility
on the relaxation times manifests itself in a transition region
between the surface and bulk-elasticity regimes. Some NSE
results in Fig. 13(b) in the vicinity of this area extend above
the high-compressibility limit, which could indicate that fi-
nite compressibility comes into play. However, these relax-
ation times in the range up to 100 ns are at the limit of the
possibilities of NSE. Hence the correlation functions in this
region carry significant uncertainty, which prevents any fur-
ther quantitative analysis.

B. Specular results: Oscillating regime

It is clear that with decreasing off-specular angle we
probe fluctuations with a smaller wave vector. Ultimately, at
the specular position we reach the limit ¢ , =0. According to
Fig. 2(a) in this limit the relaxation time should become in-
finite, while the experiments shown in Fig. 7 indicate finite
times. Evidently, it is a priori not clear what is the decisive
wave vector ¢,,, at the specular ridge. The experimental re-
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sults suggest that also at the specular position some window
of finite ¢, values determines the XPCS results by selecting
fluctuations ¢,,, in the oscillatory regime. Accepting this as-
sumption for a moment, let us investigate some of its impli-
cations. From Fig. 2(b) the frequency of the oscillations
should become smaller for thicker membranes, which fits the
observed shift of the minimum of the oscillations to slower
times for thicker membranes in Fig. 7. For even thicker 40.8
membranes the wave-vector window selects fluctuations
from the exponential regime above the crossover wave vec-
tor g, leading to exponential relaxations at the specular ridge
(Fig. 7). At the same membrane thickness, ¢, is larger for
FPP than for 40.8. As ¢, varies as 1/VL [see Eq. (20)], this
causes for FPP potential exponential relaxations at the specu-
lar Bragg position to shift to larger thicknesses beyond our
experimental possibilities. For FPP exponential relaxation at
the specular ridge has only been observed at the second
Bragg position. This indicates that the wave-vector window
of contributing fluctuations has indeed shifted to larger val-
ues and passed q..

The above explanations evidently require that we can es-
tablish a window of ¢, values that defines the range of wave
vectors ¢,,, dominating the XPCS measurements at the
specular position. In the following we propose such a mecha-
nism by a combination of two “filters,” cutting the low- and
high-wave-vector range, respectively. The high-pass “filter”
is related to the movement of the illuminated area of the
membrane as a whole (center-of-mass movement), the low-
pass “filter” to the width of the rocking curve (mosaic distri-
bution).

In Sec. I B we introduced the reference intensity signal
Iy, which is related to the movement of the coherence vol-
ume as a whole. In other words to the movement of the
center-of-mass (c.m.) of the coherence volume. Fluctuations
of a wavelength larger than the size of the coherence volume
contribute mainly to this c.m. movement. In contrast, fluc-
tuations of a wavelength smaller than the coherence volume
hardly shift the center of mass, but do contribute to the cor-
relation function. Let us define ¢.,, as the wave vector of a
fluctuation of a wavelength matching the size of the coher-
ence volume. The value of ¢, is defined by the coherence
properties of the incident beam and the resolution of the
setup. To test this point of view, we make some rough esti-
mates. The transverse coherence length of the incident beam
is of the order of few microns; the projection on the mem-
brane is about 100 um. Using Eq. (20) we can predict for the
different compounds the transition thickness for specular
oscillating-exponential relaxation. For 40.8 this should occur
at about 17 pum, which can be compared with the experimen-
tally observed transition to the exponential regime close to
10 pum. For FPP a much larger value around 120 um is pre-
dicted. As the thickest samples measured were <20 um, this
explains indeed why for FPP no transition to the exponential
regime was observed at the specular Bragg position. On the
other hand, at the second Bragg peak exponential relaxation
was observed for a 13.2-um FPP membrane (see Fig. 8).
Because of the smaller projection of the coherence length at
this position, the transition thickness would be about 30 um.
We conclude that the estimates given explain the data quali-
tatively rather well, but that quantitatively the predicted tran-
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FIG. 13. NSE results of thick (um range) 8CB membranes around the first Bragg position. (a) Intermediate scattering function for
different positions: Squares: specular. Circles: 0.1-nm™" offset. Triangles: 0.15-nm™" offset. Diamonds: 0.24 nm™". Solid lines: fits to a KWW
function with 8=0.59. (b) Experimental relaxation times for various samples: open circles: NSE at 1.5 nm. Solid circles: NSE at 0.9 nm.
Solid line: dispersion curves calculated for the thicknesses indicated (incompressible membranes). Dashed line: calculation for the 3.8

-um membrane with finite compressibility (B=10° N/m?).
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FIG. 14. Schematic representation of the window defined for
XPCS by the center-of-mass movement and the mosaic distribution
(see text). (a) The correlation function exhibits oscillatory relax-
ation when ¢, is situated at the high-g side of the window. (b) As ¢,
shifts to lower g values in the window exponential relaxation takes
over. (c) Representation of zero contrast near ¢ | =0.

sition thicknesses are a factor of 2-3 larger than found ex-
perimentally. Obviously the agreement could be improved by
reducing the estimated size of the coherence volume. In sum-
mary, ¢.,, determines the edge of a wave-vector “high-pass
filter.” Only fluctuations of larger wave vector (smaller
wavelength) contribute to the correlation function measured
by XPCS. Shorter wave vectors (longer wavelengths) con-
tribute mainly to the c.m. movement.

A second factor that influences the XPCS results is the
mosaic distribution of the smectic membranes. It can be
quantified using the width of the rocking curve, to be indi-
cated as ¢g,. This width indicates a range of projections of
scattering vectors that contribute to the intensity measured at
the Bragg position. Each contribution corresponds to scatter-
ing from fluctuations with a wave vector matching the pro-
jection of the scattering vector on the surface of the mem-
brane. The intensity profile of the rocking curve weights the
contribution of each particular wave vector to the total inten-
sity at the Bragg position. Hence ¢, can be considered as a
wave-vector “low-pass filter” of fluctuations influencing the
XPCS signal, cutting off input from larger ¢, values. The
contribution of each fluctuation is proportional to the inten-
sity at the corresponding off-specular position. This will ef-
fectively suppress input from fluctuations with large values
Of qmn'

Considering the three parameters ¢, ,, ¢,, and g, we can
build a complete picture of the XPCS results. The quantities
gem and g, define a window (“bandpass™) determining the
range of the wave vectors detected, which requires g,
>¢g.m- In Figs. 14(a) and 14(b) we indicate two possible
scenarios that depend crucially on the position of g, with
respect to this window. In case (a) the crossover wave vector

PHYSICAL REVIEW E 72, 011704 (2005)
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FIG. 15. Lines: thickness dependence of the scattering angle
corresponding to ¢, for 40.8 and FPP membranes. Circles: rocking
curve widths for 40.8 (solid circles) and FPP (filled circles) for the
thicknesses investigated. The arrow indicates exponential relax-
ation; all other points correspond to the oscillatory relaxation
regime.

q. is positioned close to the upper edge of the window. In
this situation mainly fluctuations below g, contribute to the
scattered intensity and we observe oscillatory behavior. In
case (b) the positions of ¢, ,, and g, are still the same, but g,
is situated closer to the lower edge of the window. Conse-
quently, fluctuations above g. will prevail and we expect
simple exponential relaxation. The third case (c) differs from
the previous ones in the absence of overlap between low- and
high-pass filter (¢, <g.,,). This means that fluctuations con-
tributing to the XPCS signal only translate the scattering
volume as a whole without changing the total intensity. This
results in the absence of the contrast in the corresponding
specular measurements. This situation applies to the result at
¢, =0 shown in Fig. 12.

Let us make some estimates to connect the experiments
shown in Fig. 12 in more detail to the model of Fig. 14(c). At
the specular position (g,=1.16 nm™!) the width of rocking
curves from the most uniform, resolution-limited samples is
less than 1 mdeg. An offset of 1 mdeg corresponds to a pro-
jection of the scattering vector on the surface ¢,=2.0
% 107> nm~! or a lateral size of about 300 wm. This value is
comparable to the estimated length of the coherence volume.
Consequently, at the specular ridge fluctuations are detected
with a wavelength larger than the coherence volume. As ar-
gued above, these do not contribute to the XPCS signal. On
the other hand, contributions from shorter-wavelength fluc-
tuations are not detected at the Bragg position because of the
narrow rocking curve; they start to contribute only at off-
specular positions. This is exactly the situation pictured in
Fig. 14(c). As a result only membranes with a rocking curve
width larger than about 1 mdeg provide enough contrast to
measure a correlation function at the specular Bragg posi-
tion. We conclude that the choice of our “window” of con-
tributing wave vectors provides plausible explanations of the
relatively complicated features observed in XPCS of smectic
membranes.

There are two somewhat more detailed points worth dis-
cussing in the context of the general framework given above.
Figure 15 displays the scattering angle corresponding to g,
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versus membrane thickness, separating regions of oscillatory
and exponential relaxations. Superimposed are rocking curve
widths from which position we can in principle estimate
which regime applies. For points below the crossover curve
the main contribution to the resulting XPCS signal stems
from fluctuations with oscillatory relaxation. For the points
well above the curves, fluctuations with exponential relax-
ations will play a major role. In Fig. 15 the arrow indicates a
thin 2.2-um 40.8 membrane with accidentally an unusually
large 32-mdeg broad mosaic distribution. This explains why
we observe for this sample exponential relaxation, even
through some thicker samples with narrower rocking curves
still exhibit oscillatory behavior.

Finally, in Sec. II C we discussed the surface-dominated
exponential relaxation regime for fluctuations with a wave
vector g | > g, leading to a relaxation time 7= 7;L/(27). This
result has been previously obtained in a quasistationary
model neglecting inertia of the smectic membrane [22]. In
such a model no oscillatory regime is present and the expo-
nential relaxation regime extends to ¢, =0. A linear depen-
dence of the relaxation time on thickness was reported by
Price et al. [22] at the specular Bragg position for samples of
various different materials with thicknesses =5 um. Figure
15 indicates that for these thicknesses indeed exponential
relaxations could be dominant. However, in these early
XPCS measurements the mosaic distribution of the smectic
membranes was rather large, about 50—100 mdeg, which
might also play a role. Such large values of ¢, lead in Fig. 14
to a broad overlap area; in particular the right edge of the
window extends to large wave-vector values. This results in
dominance of fluctuations with exponential relaxation, in
agreement with the observation of exclusively exponential
relaxation in the XPCS experiment of Ref. [22].

VI. CONCLUSIONS

Combining XPCS and NSE methods we have mapped out
three different relaxation modes in smectic liquid crystal
membranes: oscillatory relaxations, surface-dominated expo-
nential relaxations, and bulk-elasticity-dominated exponen-
tial relaxations. A critical wave vector g, separates the first
from the latter regimes. Fluctuations with a wave vector
qmn<q. exhibit oscillatory relaxation while in the region
qmn>q. fluctuations lead to simple exponential relaxation.
For small wave vectors g,,, (but above ¢g,.) the exponential
relaxation time does not depend on the wave vector and is
defined by surface tension, thickness, and viscosity of the
membrane. This behavior has been observed in a series of
off-specular XPCS experiments, for which the relaxation
time was independent of the scattering angle. For larger
wave vectors ¢,,, the exponential relaxation times are deter-
mined by the bending elasticity of the smectic layers and
decrease as 1/q-,. This regime has been probed by NSE
measurements thanks to the accessibility of an order of mag-
nitude larger off-specular scattering angles compared to
XPCS. The results indicate a decrease of the relaxation time
with increasing scattering angle as predicted.

XPCS measurement at specular positions are dominated
by a “window” of wave vectors cutting longer and smaller
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values. This window results from a combination of the mo-
saic distribution of the smectic membranes (width of the
rocking curve) selecting long-wavelength fluctuations and
the size of the coherence volume, inside which only short-
wavelength fluctuations perturb the density profile, and is
given by the overlap of these two regimes. For thin mem-
branes this window is dominated by fluctuations with g,
<gq,, resulting in oscillatory behavior of the intensity corre-
lation function. For thicker membranes the crossover wave
vector g, shifts towards smaller values and the window of
contributing fluctuations is dominated by exponential relax-
ation. For extremely well-ordered membranes characterized
by a narrow rocking curve <1 mdeg, the wave-vector win-
dow is empty, which results in the absence of any contrast in
the specular correlation function.
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APPENDIX A: EFFECTS OF THE FINITE-SIZE
COHERENCE VOLUME

In this appendix we discuss the finite size of the coher-
ence volume that can lead to a nonzero contribution of the
term I, in Eq. (11). This has direct consequences for the
validity of the Siegert relation. Let us denote the lateral size
of the coherence volume as 2R. Introducing Eq. (3) into the
correlator of 1,, we can calculate the corresponding contribu-
tion to Eq. (4). We shall use new variables é=r; , +r; , and
n=(r; —r;)/2. Introducing integration limits correspond-
ing to the finite size and using that /, is a product of complex
conjugate numbers, we obtain the following result:

12 = f f J f dr1drgdrzdrw—iq-(rl+r3)e,~q4(r2+r4)

X(Ap(r;,0)Ap(rs,1)){Ap(ry,0)Ap(ry, 1))

R
J dn j dz,dzze” 1% Ap(,2,,0)
R

2(R-7) ‘ 2
XAp(= 1,2,1)) et
=2(R-7)
R N
= |5layer(qZ)|2 4f d77 E eXP{— l(m + I’l)d}
0 m,n=1
in[2q , (R ?
X <e—iqz[u(—77,0)+u(77,l)]>wR . (AD

q.R
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FIG. 16. Calculations of g,(7)
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The term py,,,(q,) represents the Fourier transform of the
density profile of a single smectic layer. For integration lim-
its at infinity, this term would contribute a & function to the
scattering at the specular ridge (q,=0). For a finite-
resolution setup, the J-function contribution smears out and
transforms into a function of the type sin(x)/x with a finite
width in q, space still centered at q , =0. Defining g.(7,1)
=([u(=7,0)+u(7,0)]’) and using (exp(ix))=exp(~(x*)/2)
we can rewrite I, in the form

R 2
q
4f dn eXp(— —zg+(77,t)>
0 2

2

12 = |ﬁluyer(qz) |2

sinl2g (R= )]

4R (A2)

R 2 .
q; sin[2¢ (R - 7)]
f dneXp(— —g+(’r7,t)>—L R
0 2 q.R

10 100 1000
In a similar way we can derive an expression for /5. De-

fining new variables now as é=r;  +ry,, 7=(r;,
-1y 1)/2 and writing g_(7,1)=((u(-7,0)-u(7n,)]* we ob-

tain
R q2
4f dn eXP(- —"g_(n,t))
0 2

2
: (A3)

2

13 = |ﬁlayer(qZ)

Xcos(g,; R)(R - n)

Using Egs. (A2) and (A3) we can finally write g,(7) as

2

2 R q2
+ ‘ f dneXp(— jg_(n,t))COS(qiR)(R— 7)
0

=1+

0

Figure 16 shows the effect of the contribution of 7, to the
calculation of the intensity correlation function for finite
sizes. The curve in Fig. 16(b) indicates that the presence of I,
shifts all oscillations above the baseline, creating a profile
that cannot be obtained on the basis of the Siegert relation.
Such oscillations have been observed in homodyne light
scattering experiments of smectic membranes [49], which
suggests that the term /, can be important for a correct treat-
ment of scattering data in this regime.

APPENDIX B: LAYER DISPLACEMENT CORRELATION
FUNCTION IN SMECTIC MEMBRANES

In this appendix we consider the theory of fluctuations in
smectic membranes following Shalaginov and Sullivan [32].
These authors applied Fourier transforms both in space and
time, solving the equation of motion in (q,) space. In the
following treatment we avoid switching into w space and
solve the equation of motion in (q,#) coordinates. We find
such an approach more transparent, as in XPCS as well as in

R
f dn eXP(- %g_(n,0)>cos(qu)(R -7)

2

NSE experiments the energy of photons is not discriminated
and the results are obtained in terms of the time-dependent
intermediate scattering function S(q,1).

Let us consider fluctuations of a rectangular smectic-A
membrane of thickness L and lateral sizes (LX,L),). The free
energy has the form of the Landau—de Gennes—Hotyst free
energy [26,50]:

L2
F= 1 f d*r, f dz{B[V.u(x,y,z)]*} + K[Viu(x,y,z)]2}
2 _L2

+ ALV ule,y,z==LI2)P+[V ulx,y,z=L12)} ¢.

(B1)

This functional form leads to the equation of motion
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Fulxy)

Po Py

J
n35Viu(x,y) +(BV: - KA Ju(x,y), (B2)
which must be completed with boundary conditions at the
surfaces and edges of the membrane:

- %Viu(x,y,z =+ L/12,t) =+ V.u(x,y,z= =L/2,1)=0,

(B3)
u(0,y,z,0) =0,u(L,,y,z,1) =0,

u(x,0,z,1) = 0,u(x,Ly,z,1) = 0. (B4)

Because Eq. (B2) is a fourth-order equation in r  (x,y), two
more boundary conditions are required at the lateral edges.
These extra conditions will not have a much influence be-
cause the wavelengths of the fluctuations observed are orders
of magnitude smaller than the size of the membrane. We
have chosen the following two additional conditions, mainly
because these are the only ones allowing to solve Eq. (B2)
analytically:

u"(0,y,z,6) =0,u"(L,,y,2,) =0,

u"(x,0,z,0) = 0,u"(x,Ly,z,1) = 0. (B5)

To analyze the scattering data the displacement-displacement
time  correlation  function  g(r,,z,z",1)={{u(0,z’,0)
—u(r, ,z,1)]*) must be computed. This correlation function
can be expressed in the following form:

g(r,7,7,0)=G(z,2) + G(z',z') = 2G(r | ,z,7',1), (B6)

G(z,z') =(u(0,z",0)u(0,z,0)), (B7)

G(ri,z,z’,t)=<u(0,z',0)u(rl,z,t)>. (BS)

In Eq. (B2) derivatives of r, appear only as Laplace opera-
tors. Hence, we can expand the solution in a series of eigen-
functions of the Laplace operator that fulfill the boundary
conditions, Egs. (B5) and (B6):

mm ™
u(x,y,0,z,1) = E Amn(z,t)sin<L—x) sin(L—y> .

m,n=0 y

(B9)

From this equation we obtain the correlation function
G(r,,z,z',1) in the following form:

L, Ly
G(r,,z,2' 1) = J f dxdy >, 2 Ay(z.0A(Z 1)
0 0

m,n k,p

Cfmm \ [ 7n
X s1n< —x) sm( —y)
L, L,

k
Xsin(Z—(x +x’))sin<?(y +y’))

X y
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mm mn
= 2 Gmn(Z,ZI,I)COS<L_)€/)COS(L—y’> .

m,n X y

(B10)

An equation similar to Eq. (B2) holds for the corresponding
Fourier amplitudes G,,,(z,z’,1) [32]:

#G,(2,2' 1)
e

J
(?IZ == 773Qr2nn5Gmn(Z’Z,7t)

+(BV: = Kq,)G,n(z.2".1), (B11)

s (Wm)z (77}1)2
qmn= o + - N
L, L,
G,n(z,z',1) fulfills following the following initial and
boundary conditions:

in which

(B12)

Gn(2:2',0) = Gy (2,2), (B13)
¥4,
Bm"Gmn(z ==xL/2,7,)xV.G,,,(z= £L/2,7',1) =0,
(B14)
Here G° (z,7') is the Fourier amplitude of the equilibrium

correlation function corresponding to the wave vector g,,,
calculated in Ref. [27]. In order to solve Eq. (B11) we sepa-
rate the variables ¢ and z:

demn(Z’Z,’O) )\

+—G,(2,2',0) =0, (B15)

&z B
PG (2,2 ,0) , 4
2 S 26, x
Po 0”l2 773qmn ot (Z Z )
+ (qum + )\)Gmn(Z’Z,’t) =0, (B 16)

The solution can be represented in the form

Gn(2,2',1) =A()\,t)sin( \/%z) + B()\,t)cos( \/§Z>

(B17)

In order to fulfill the boundary conditions at the top and
bottom surfaces of the film we need the roots of the follow-
ing equations:

L 2
cot()\i—) =—M, (B18)
2 B
L 2
tan(,u,-—) = Y (B19)
2 /.LIB

From these equations we get an infinite spectrum of solutions
{\j,ui}. Now G,,,(z,7',1) can be represented in the form
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> G (pin2’) ! !
Gonl2,2',0) = 2, AN, 1)sin(N;2) + B 1)cos(p2) B(u;1) = Tel XP\7 ) T Te2 XP\T ) |

=0 Te = Te2 el Te2
(B20) (B24)

where A(\;,7) and B(w;,?) are solutions of Eq. (B16). They where
can be written as

t t 2 L/2
AN, 1) = Sl()\i)exp(— —) + Sz()\,-)exp<— —) , (B21) G'(\,7') = —f G (z.7')sin(\z)dz, (B25)

71 T2 L) ip

t t

B(p;1) = Cl(Mi)eXP<— :) + Cz(Mi)eXP<— :) . (B22) 5 (L2
: : G(mp2') = —f G° (z.z')cos(uz)dz.  (B26)

Applying the initial conditions we find -Li2

S !
AN;1) = M[TM exp(— L) -7, exp(— L) ] , Using the expression for G° (z,z') given in Ref. [27] and
Ts1 ™ Ts2 s, Ts.2 using the boundary conditions from Egs. (B18) and (B19) we
(B23) can find exact analytical forms for the above integrals:
J
L L
24°| g cosh(g—) +a sinh(g—)
G0 = sinng) 2 2 i M e (B27)
»2)=—>——-|sin(\z") + sin| — |sinh(gz’) |,
BL(g>+\2) gA 2 &
L L
kT Za{g sinh(g?) +acosh<g7)} I
: i
G (u,z') = — B _lcos 2+ cos(—)cosh z 1, B28

(minz") BLE + 12 (miz') oA 5 (g2") (B28)

where g=¢2,VK/B, a=yq.,,/B, and A=(g*+a?)cosh(gL)+2ga sinh(gL). The times 7,5 and 7, depend on the param-
eters {\;, u;} and can be found from the following relations:

2 4 -l
733(1,2)0\,.):—"2(11\/1— i (Kq:‘m+3>\,.2)) , (B29)
73 1mn 39 mn
2p 4p -
rc,<1,z>(ui)=—2(1i \/ 1-— (in‘,m+Bu?) : (B30)
39 mn 39 mn

Summarizing the above calculations we can write the real-space correlation function in the following form:

G(x,y.z,2'. )= >, cos

m,n=1

G;(u;z")cos(uz)

t t
o Teq exp(— _) —T.n exp(— _>
™m ™m ’ Te ’ ()
—Xx|cos| —y E : *
Lx Ly i=0 Te1 = Te2

t t
T 1 OXPl =~ | — T2 ©Xpl — ——
+ Ts,l Tx,2

Ts1— 5,2

Gf()\i’z,)Sin(:u’iZ) . (B31)

From Egs. (B27) and (B28) we note that Gi(\;,z") and G{(u;,z") decrease for increasing values of the undulation wave vector
¢n and the compression wave vectors {\;, u;}. This means that Eq. (B31) is dominated by the fluctuations with the smallest
wave vector (largest wavelength).

Let us consider the high-compressibility limit for which B— <. In this case, we can find analytical solutions for Egs. (B18)
and (B19). As the dominant modes are the ones with the smallest wave vector, we consider only the smallest root ;.
Approximating the tangent in Eq. (B19) by a linear function we obtain

011704-16



DYNAMICS OF FLUCTUATIONS IN SMECTIC MEMBRANES

I
©

—
[3,]
T

=
(]

Correlation function

o
3]

0.1 1 10 100
Time (us)

PHYSICAL REVIEW E 72, 011704 (2005)

(b)

= = N
[=) o [=)

Correlation function

I
3

0.1 1 10 100

FIG. 17. Calculated correlation functions for a 10-mm-long and 0.5-um-thick FPP membrane. (a) Single fluctuations with wave vector
number m as follows: Triangles: 500. Squares: 1000. Circles: 2000. Solid line: 3000. (b) Dependence of the correlation function on the upper
limit of the sum in Eq. (B34) for the lower limit set at 500. Upper limits as follows: Squares: 501. Circles: 1000. Solid line: 2000. The graphs
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|2y
M= Lqun'

Using this value for u; we find for G{(g,,,,z") the following
expression:

(B32)

2kyT

= B33
KLy, +29q,, (B33)

GT(CImn) =

Equation (B31) now reduces to the form

- 1 m
G()C,y,t):2k T E —COS<_X)
b m,n=1 KLantz + qugnn LX

t t
T exp(— —) - T exp(— —>
™™ T kp)
Xcos| —y .
L),

TN — T
(B34)

Introducing u; into Egs. (B30) and (B29) the relaxation
times 7; and 7, are

1 2 4 2
— o B [1 Ti \/ o (Kcﬁm + —yqin> - 11
T2 2py 739 mn L

(B35)

= a(qun) F if(Gmn) s
which was introduced as Eq. (16) in Sec. II C.

Equation (B34) indicates that the layer-displacement cor-
relation function depends on a superposition of contributions
of fluctuations with different wave vectors. By changing the
limits of the summation we can investigate which wave vec-
tors contribute most to the correlation function. For the sake
of simplicity we consider for this exercise a one-dimensional
case, omitting the y dependence in the correlator G(x,y,?).
Now the summation in Eq. (B34) is performed over one
index only and the wave vector is defined as g,,=(mm/L,).
Figure 17(a) shows the result of a series of calculations of
the intensity correlation function in which the correlator
G(x,1) is defined by a single fluctuation. This is achieved by
taking only one term in Eq. (B34) with index m correspond-
ing to the chosen wave vector. We observe that for higher-
order fluctuations the oscillations are weaker. At a crossover
point m=3000 all oscillations disappear. Figure 17(b) dis-
plays the cumulative effect of the fluctuations on the inten-
sity correlation function. Fixing the lower limit of the sum-
mation in G(x,7) at m=500 and extending the summation to
larger values of m, we see that, compared to Fig. 17(a), the
oscillations hardly change. This behavior indicates that the
resulting correlation function is mainly defined by the inter-
val of the shortest wave vectors included in Eq. (B34). This
argument has been used in Sec. V B as a basis for the intro-
duction of a “window” of wave vectors dominating the cor-
relation functions as measured in XPCS.
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